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où σ2
n est la variance empirique

σ2 = 1
n

n∑
i=1

(Xi − µ)2.

Il est alors clair que la fonction de vraisemblance atteint son maximum
pour σ2 = σ2

n. σ2
n est donc ici l’estimateur du maximum de vraisem-

blance. C’est un estimateur consistant mais qui, comme on l’a déjà vu,
est biaisé.

4. Dans le cas d’une loi gaussienne de paramètres (µ, σ2), où σ2 est in-
connue et µ est inconnue, on refait comme précédemment. On a vu
que

L(X1, . . . , Xn, µ, σ
2) = 1

(
√

2πσ)n
exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2
}
.

Le calcul fait au 3. montre qu’on a toujours

L(X1, . . . , Xn, µ, σ
2) ≤ 1

(
√

2πσn)n
exp

{
− 1

2σ2
n

n∑
i=1

(Xi − µ)2
}
,

avec égalité pour σ = σn. D’après le calcul fait en 2., ce majorant est
maximal pour µ = X̄n.
Finalement, le couple θ = (µ, σ2) réalisant le maximum de vraisem-
blance est formé par la moyenne empirique X̄n et la variance empirique
σ2

n. Comme on l’a déjà signalé, X̄n est consistant sans biais, tandis que
σ2

n est consistant, mais biaisé. Pour avoir un estimateur sans biais de

σ2, il faut considérer l’estimateur s2
n = 1

n−1

n∑
i=1

(Xi − X̄n)2.

13.3.2 Méthode des moments

Soit un modèle statistique indexé par un ensemble Θ. Supposons donné un
n−échantillon X1, . . . , Xn d’une loi intégrable sous Pθ pour chaque θ ∈ Θ. On
cherche un estimateur θ̂ de θ.

Supposons que Θ est une partie de R. On suppose également qu’on a un
intervalle I de R tel que Pθ(X1 ∈ I) = 1 pour tout θ ∈ Θ. L’idée de la
méthode des moments est de prendre comme estimateur θ̂ une valeur de θ
telle que EθX = m(θ) coïncide avec la moyenne empirique observée.

Définition. Un estimateur par la méthode des moments est une solution de
l’équation

X̄n = 1
n

n∑
i=1

Xi = m(θ̂).

Si m réalise une bijection de Θ dans I , alors θ̂ = m−1(X̄n).
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Si Θ est une partie de Rd, on calcule EθX = m1(θ), . . . , EθX
d = md(θ). Un

estimateur par la méthode des moments est une solution du système d’équa-
tions

1
n

n∑
i=1

Xi = m1(θ̂), . . . ,
1
n

n∑
i=1

Xd
i = md(θ̂).

Si m est inversible, alors (θ̂1, . . . , θ̂d)′ = m−1
(

1
n

n∑
i=1

Xi, . . . ,
1
n

n∑
i=1

Xd
i

)′
.

Exemple. On veut estimer la moyenne et la variance par la méthode des
moments. Posons θ = (m,σ2) ∈ R×]0,+∞[. On a m = EθX et σ2 = Varθ(X).
On sait de plus que Eθ(X2) = σ2 +m2, ce qui donne alors

1
n

n∑
i=1

Xi = m̂ et 1
n

n∑
i=1

X2
i = σ̂2 + m̂2.

On en déduit donc que m̂ est la moyenne empirique et

σ̂2 = 1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

.

Remarque. — Dans certains cas, l’estimation par la méthode des mo-
ments est moins bonne que l’estimation par maximum de vraisem-
blance. Néanmoins, dans le cas de la loi Gamma par exemple, le calcul
de la fonction de vraisemblance peut poser des problèmes (l’utilisation
de l’ordinateur et d’algorithmes numériques est indispensable) tandis
que l’estimation des moments est très facilement accessible.

— La méthode des moments peut s’utiliser comme point de départ pour
maximiser la (log-)vraisemblance. En effet, on doit alors utiliser des
algorithmes numériques, comme la Méthode de Newton, qui nécessitent
des points de départ.

— Lorsque la taille de l’échantillon n’est pas suffisamment grande, la
loi des grands nombres ne s’applique pas et par conséquent, les mo-
ments empiriques n’approchent pas suffisamment les moments théo-
riques. Ainsi, la méthode des moments n’est pas une bonne méthode
dans ce cas, car les estimateurs obtenus peuvent sortir du support des
paramètres. Par exemple, pour la loi Γ(a), un petit échantillon peut
conduire à a < 0.

— Enfin, nous avons vu que la méthode des moments consiste à résoudre
une équation du type X̄n = m(θ̂), ce qui n’est pas toujours possible.


